Introduction

The brain requires continuous supply of glucose for proper functioning. Human brain accounts for 2% of body weight but it utilises only one fourth of body’s glucose due to its high metabolic rate [1]. Uptake of glucose in most cells (except liver and brain) is dependent on insulin and mediated through various glucose transporters or sodium glucose co-transporter. Neuronal uptake of glucose is non insulin dependent and through glucose transporter[2].

Hypoglycemia commonly occurs in diabetic patients who are receiving either insulin or long acting sulfonylureas and patients with insulin-secreting tumors, sepsis, Addison disease, and hepatic or renal failure[3]. Neuroglycopenia may present with any neurological manifestations including aphasia, paresis, ataxia, chorea, Seizure or coma[4]. Rarely neuroglycopenia can present as ataxia after a hypoglycemic episode[5].

The Brain areas most vulnerable to hemodynamic alterations such hypoxia, hypotension and hypoglycaemia are subiculum, caudate nucleus, hippocampus, dentate gyrus and superficial cortical layers 2 and 3[6]. MR imaging is the investigation of choice in acute hypoglycaemia setting to determine diagnosis and prognosis. Hypoglycaemia is usually mimic stroke clinically as well as radiologically[7].

Here we are reporting a case of 65 years old male diabetic presented with transient hemiparesis, gait ataxia and acute DWI restriction in Rt cerebellar region (acute cerebellar stroke).

Case Report

73 year old male patient, presented with complaints of sudden onset-drowsiness, slurring of speech. He has past history of DM type2, CAD-Post CABG, HTN, COAD.

General Physical Examination was unremarkable and his Vital parameter were blood pressure - 170/67 mm Hg, Pulse-88/min and respiratory rate-26/min.

Neurological examination revealed drowsiness dysarthria, pupils b/l reactive, Motor-moving all 4 limbs spontaneously, normal reflexes and mute bilateral plantar. Sensory and cerebellar signs could not be examined.His routine biochemistry was normal except hemoglobin (Hb-9.2 gm/dl). His blood sugar and HbA1c were 37 mg/dl and 5.8% respectively. So he is diagnosed as hypoglycemic encephalopathy was made and 25% glucose intravenously was given. After glucose infusion patient regained consciousness and
DISCUSSION

Hypoglycemic manifestation categories into autonomic, which include sweating, trembling, palpitations, and anxiety and neuroglycopenic, which include weakness, confusion, personality changes, seizures, dyskinesia, headache and transient cognitive impairment[8]. The energy failure due to aspartate neurotoxin in hypoglycemic induced brain damage leading to loss of cellular homeostasis is well known hypothesis demonstrated in various literature in contrast to ischemic stroke in which cellular damage secondary to glutamate[9]. Aspartate causes selective neuronal damage in the cerebral, basal ganglia and hippocampus. This effect is more vulnerable in acute phase result in hyperkinetic movement disorder[10].

Recent case report have shown ADC and DWI changes in hypoglycaemic patients. These changes usually reverse after euglycemia unlike ischemic stroke.

Hypoglycaemic changes are usually bilateral involving mainly basal ganglia region and cortex[9,10].

Thalamus, brainstem and cerebellum are usually not involved in hypoglycaemia. If involved lesions are usually bilateral and unilateral lesion rarely reported. Thalamus is not involved in hypoglycaemia contrast to ischemia [11]. Recently cerebellar ataxia due to hypoglycemia was reported in absence of diffusion restriction on MRI[12].

CONCLUSION

Hypoglycemia can present as any neurological manifestations. The cerebellar ataxia due to hypoglycaemia is rare. The diffusion restriction in unilateral cerebellar region is also very rare. Possibility of hypoglycemia should be considered in all cerebellar stroke patients. Prompt glucose infusion in hypoglycaemic patients completely resolve the signs and symptoms and further prevent brain neurotoxicity.
References

