Assessment of Hot Water and Ethanolic Leaf Extracts of Cymbopogon Citratis Stapf (Lemon Grass) against Selected Bacteria Pathogens

Lovet T. Kigigha¹, E.J. Uhumwngbo², Sylvester Chibueze Izah*¹

¹Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa state, Nigeria
²Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, Ambrose Alli University, Ekpoma, Edo state, Nigeria
*Corresponding Author: Sylvester Izah, Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa state, Nigeria

ABSTRACT
This study investigated the comparative activity of hot water and ethanol leaf extracts of Cymbopogon citratus (lemon grass) against some bacterial pathogens (viz: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus subtilis). The lemon grass samples were purchased from Etegwe market in Yenagoa, Bayelsa state, Nigeria. Ethanol and hot water was used for the extraction, and agar well diffusion sensitivity method was adopted for the study. The zone of inhibition for E. coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis were 9.33 mm, 9.33 mm, 11.33 mm and 9.67 mm respectively for hot water leaf extract, and 12.00 mm, 11.33 mm, 12.33 mm and 10.67 respectively for ethanolic leaf extract. There were significant variation (P<0.05) between hot water and ethanolic leaf extracts of Cymbopogon citratus for E. coli and Pseudomonas aeruginosa. Furthermore, apparent superior effects also occurred for Staphylococcus aureus and Bacillus subtilis but it was not significantly different (P>0.05) between the two solvents. The activity of the leaf extract of Cymbopogon citratus against the tested microbes suggests its potential for broad spectrum antibiotics.

Keywords: Antibacterial, Cymbopogon citratus, Disease Control, Medicinal Plants, Solvents

INTRODUCTION
The challenge of drug resistance, emerging and re-emerging diseases is a serious concern to the field of phytomedicine, pharmacognosy and pharmaceutical microbiology and chemistry (Izah et al., 2018a). Furthermore, plants have emerged as credible sources of new antimicrobials (Kigigha et al., 2018, 2016, 2015; Izah et al., 2018a-d; Izah and Aseibai, 2018). As a result, research on the efficacy of plants has increased. Several Plants have been widely reported to be effective against various disease conditions including those caused by microorganisms.

Medicinal plants are plants whose one or more parts have therapeutic effects (Izah et al., 2018a-d; Izah and Aseibai, 2018; Kigigha et al., 2015, 2016, 2018). Studies have indicated that significant number of global population use herbal medicine for the treatment of several diseases (Kalunta, 2017; Kigigha and Kalunta, 2017; Epidi et al., 2016a,b; Nyarko et al., 2012) especially individuals residing in rural areas in many developing countries. According to Nyarko et al. (2012), phytomedicine or herbal medicine is a major component in all indigenous peoples’ tradition, a common element in ayurvedic, homeopathic, naturopathic, traditional oriental.

Cymbopogon citratus which is commonly known as lemongrass belongs to the grass family of Poaceae (Vyshali et al., 2016; Izah and Aseibai, 2018). Lemon grass is a fast growing, perennial aromatic grass native to South India and Sri Lanka, and now its commonly cultivated in the tropical areas of America, Asia (Manvitha and Bidya, 2014), Africa including Nigeria. Typically, Cymbopogon represents an important genus of about 120 species that grows in tropical and subtropical regions around the world (Hanaa et al., 2012).

Cymbopogon species is a coarse grass with a strong distinct lemon flavour and citrusy aroma
Assessment of Hot Water and Ethanolic Leaf Extracts of Cymbopogon Citratus Stapf (Lemon Grass) against Selected Bacteria Pathogens

(Manvitha and Bidya, 2014; Naik et al., 2010). Manvitha and Bidya (2014) reported that lemon grass can grow up to 1 meter with numerous stiff leafy stems arising from short rhizomatous roots. Cymbopogon citratus has been cultivated over many years for medicinal purposes in different regions of the world (Naik et al., 2010) and food. According to Zulfa et al. (2016), probably due to the sharp lemon flavor, it’s an essential ingredient in Asian cuisines.

In addition to its culinary usage, lemongrass offers an array of medicinal benefits. The plant is used extensively in Ayurvedic medicine (Manvitha and Bidya, 2014). The leaves are used to make tea which can relieve stomach and gut problems (Nyarko et al., 2012). Lemon grass also has anti-depressant and mood enhancer, anxiolytic, hypnotic and anticonvulsant properties (Nyarko et al., 2012). Several others studies have documented the medicinal potentials of lemon grass (Sherwani et al., 2013; Manvitha and Bidya, 2014). Most of the claims made by traditional medicine practitioners have been scientifically validated for anti-hepatotoxicity, anti-microbial, anti-protozoan, anti-diarrheal, anti-amoebic, anti-inflammatory, anti-filarial, hypoglycemic and neurobehavioral potentials (Manvitha and Bidya, 2014).

Several studies have been conducted with regard to the antimicrobial potentials of lemon grass (Jafari et al., 2012; Naik et al., 2010; Vyshali et al., 2016; Kapilan, 2015; Zulfa et al., 2016; Izah and Asseibai, 2018). To these effects, several solvents including methanol, hexane, chloroform and ethanol have been used to extract active ingredients from the leaves of lemon grass for antimicrobial studies. But the use of hot water appears to be scanty in literature. Therefore, this study assessed comparative antibacterial activity of hot water and ethanol leaf extracts of Cymbopogon citratus against some selected pathogenic bacteria.

MATERIALS AND METHODS

Sample procurement and preparation

The leaf of Cymbopogon citratus used in this study was bought from Etegwe market in Yenagoa metropolis, Bayelsa state, Nigeria. The leaf samples of Cymbopogon citratus were dried at room temperature. Then after, it was cut in pieces and blended with bender.

Extraction method

The extraction was carried out using soaking method previously described by Doherty et al. (2010) and Chiejina and Ukeh (2012) with slight modifications. Hot and cold distilled water were used for the extraction. 40g of the blended samples were extracted using 100ml of ethanol and hot water (Kigigha et al., 2015). The samples was soaked for 3 days, thereafter they were filtered with muslin cloth and the extract was collected in a conical flask (Kigigha et al., 2015). The extracts were further filtered using Whatman filter paper. The resultant filtrates of the ethanolic extracts were concentrated in a rotary evaporator.

Source and Preparation of organisms

The microorganisms used for the investigation were obtained from Medical Microbiology Unit, Federal Medical Centre, Yenagoa, Bayelsa state, Nigeria. The purity of the bacteria was checked by subculturing, and then subjected to biochemical test following the guide of Cheesbrough (2004).

Antimicrobial screening of the extract

Agar diffusion method previously described by Lino and Deogracious (2006) with modifications by Kigigha et al. (2015, 2016, 2018), Epidi et al. (2016a,b), Doherty et al. (2010), Agu and Thomas (2012), Izah and Asseibai (2018) were employed. Nutrient agar was prepared according to the manufacturer’s instruction. The resultant zone of inhibition after incubation for 24 hours was recorded.

Statistical analysis

SPSS software version 20 was used to carry out the statistical analysis. The data were expressed as Mean ± standard error. Student “t” test was carried out to compare between hot water and ethanolic extract for each of the bacteria isolates.

RESULTS AND DISCUSSION

The comparative zone of inhibition for 100% concentration of hot water and ethanolic leaf extract of Cymbopogon citratus is presented in Table 1. The zone of inhibition for E. coli, Pseudomonas aerugionsa, Staphylococcus aureus and Bacillus subtilis was 9.33 mm, 9.33 mm, 11.33 mm and 9.67 mm respectively for hot water, and 12.00 mm, 11.33 mm, 12.33 mm and 10.67 respectively for ethanolic extract. The comparison of both hot water and ethanolic extract with regard to each of the bacterium under study showed that there significant
Assessment of Hot Water and Ethanolic Leaf Extracts of Cymbopogon Citratus Stapf (Lemon Grass) against Selected Bacteria Pathogens

variation (P<0.05) between hot water and ethanolic leaf extracts of Cymbopogon citratus for E. coli and Pseudomonas aerugionsa. In addition, Staphylococccus aureus and Bacillus subtilis revealed that there no significant variation (P>0.05) between hot water and ethanol leaf extracts of Cymbopogon citratus.

Table 1: Comparative zones of Inhibition (mm) of hot water and ethanolic leaf extracts of Cymbopogon citratus

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Hot water extract</th>
<th>Ethanolic extract</th>
<th>t-value</th>
<th>p-value</th>
<th>Statistical Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>9.33±0.33</td>
<td>12.00±0.58</td>
<td>-4.000</td>
<td>0.016</td>
<td>SD</td>
</tr>
<tr>
<td>Pseudomonas aerugionsa</td>
<td>9.33±0.33</td>
<td>11.33±0.33</td>
<td>-4.213</td>
<td>0.013</td>
<td>SD</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>11.33±0.33</td>
<td>12.33±0.33</td>
<td>1.342</td>
<td>0.251</td>
<td>NSD</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>9.67±0.33</td>
<td>10.67±0.33</td>
<td>-2.121</td>
<td>0.101</td>
<td>NSD</td>
</tr>
</tbody>
</table>

Data is expressed as mean ± Standard Error; SD- significant difference (P<0.05), NSD - no significant difference

Cymbopogon citratus have been several reported to possess antimicrobial potentials (Izah and Aseibai, 2018; Vyshali et al., 2016; Zulfa et al., 2016; Naik et al., 2010; Manvitha and Bidya, 2014; Danlami et al., 2011; Ewansih et al., 2012; Jafari et al., 2012; Kapilan, 2015). The presence of phytochemical and bioactive ingredients in plant have been attributed to its anti-microbial potentials (Kigigha et al., 2015, 2016; Kigigha and Kalunta, 2017; Kalunta, 2017; Epidi et al., 2016a,b; Izah et al., 2018). Several phytochemicals have been reported in Cymbopogon citratus. For instance, Ewansih et al. (2012) reported the presence of tannins, flavonoids, phenols, carbohydrates and volatile oil in both the root and leaf parts of Cymbopogon citratus. Ekpenyong et al. (2014) reported tannins, saponins, flavonoids, phenols, anthraquinones, alkaloids, deoxy sugars, and various essential oil in Cymbopogon citratus. Shah et al. (2011) reported flavonoids, phenolic compounds, terpenes, alcohols, ketones, aldehyde and esters, Citral α, Citral β, Nerol Geraniol, Citronellal, Terpinolene, Geranyl acetate, Myrcene and Terpinol Methylheptenone. Ranitha (2012) also reported the presence of Citral, Geranic Acid, Geranyl Acetate, Linalool, Neric acid, (Z) Citral, β-myrcene and β-Thujene in Cymbopogon citratus. The authors in their studies indicated that different solvent have varying effects on the phytochemical constitutes of the plant.

In this study both ethanolic and hot water extracts of Cymbopogon citratus is active against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Pseudomonas aerugionsa. The clear zone of inhibition depends on the solubility and rate of diffusion in agar medium (Kapilan, 2015). The variation that exists among the efficacy of the extracts among the different isolates under study could be due to variation in metabolism, physiology, nutrition and biochemistry of the test isolates (Kigigha et al., 2016; Epidi et al., 2016a,b; Izah et al., 2018b). Furthermore, the age of the plant and the prevailing environmental condition that the plant were cultivated may also affect the bioactive constituent of the plants (Izah et al., 2018b). Again, the different solvent have varying efficacy on the zone of inhibition. This trend have been reported by Kigigha and Atuzie (2012), Epidi et al. (2016a,b). The possible reason to this effect could be associated to the difference in the polarity level of the solvents (Epidi et al., 2016a,b).

The zone of inhibition of this study is similar to values previously reported by authors. For instance, Zulfa et al. (2016) reported that methanolic Cymbopogon citratus extracts has positive efficacy toward food borne pathogens such as Bacillus cereus, Escherichia coli O157:H7, Klebsiella pneumoniae, Staphylococcus aureus and Candida albicans. Kapilan (2015) reported that Bacillus pumilus, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa is sensitive to aqueous, ethanolic, methanolic and liquid nutrient extracts of Cymbopogon citratus. Naik et al. (2010) reported that essential oil of lemon grass is effective against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Jafari et al. (2012) reported that methanolic extracts of Cymbopogon citratus against Staphylococcus aureus, Bacillus cereus and Escherichia coli, but not effective toward Pseudomonas aureuginosa. Vyshali et al. (2016) reported that Cymbopogon citratus is effective against Enterococcus faecalis, Staphylococcus aureus, Shigella dysenteriae, Salmonella typhii, Trichophyton rubrum and Cryptococcus neoformans. The authors further attributed the antimicrobial efficacy to its essential oil. The
variation in this study with previous study could be due to the concentration used.

CONCLUSION

The use of plants for medicine can be dated back to the history of man. A significant number of world populations still rely on herbs for medicine especially in rural areas in many developing countries. Probably due to the instances of drug resistance, emerging and re-emerging microbial strains, there has been an upsurge of research in the field of herbal medicine, pharmaceutical microbiology and phytomedicine. Cymbopogon citratus is one of the major food spices used in preparing several delicacies. Within the last few decades, the use of Cymbopogon citratus in preparing several tea/ beverages products have increased. This study evaluated the activity of hot water and ethanol leaf extracts of Cymbopogon citratus against Staphylococcus aureus, Bacillus subtilis., Escherichia coli, and Pseudomonas aeruginosa. The results showed that both extract is active against the test organisms. However, the ethanolic extract has superior effects, indicating the effect of choice of solvent in extracting active ingredients of plant parts. The effectiveness of the plant against the microbes under study suggests its potentials for broad spectrum antibiotics.

REFERENCES

Assessment of Hot Water and Ethanolic Leaf Extracts of Cymbopogon Citrates Stapf (Lemon Grass) against Selected Bacteria Pathogens

Candida albicans. Biotechnology Research, 3(3):71-76

[28] Ranitha AP M (2012). Extraction and characterization of essential oil from ginger (Zingiber officinale Roscoe) and lemongrass (Cymbopogon citratus) by microwave-assisted hydrodistillation (MAHD). Thesis submitted in fulfillment of the requirements for the award of degree of Bachelor of Chemical Engineering, Universiti Malaysia Pahang.

Citation: Lovet T. Kigigha, E.J. Uhunmwangho, Sylvester Chibueze Izah, “Assessment of Hot Water and Ethanolic Leaf Extracts of Cymbopogon Citrates Stapf (Lemon Grass) against Selected Bacteria Pathogens”. (2018) Annals of Microbiology and Infectious Diseases, 1(3), pp. 04-08

Copyright: © 2018 Sylvester Chibueze Izah. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.