A Note on Visualizing the Optimal Time for Closing a Momentum Trade

Reza Habibi

Iran Banking Institute, Central Bank of Iran

*Corresponding Author: Reza Habibi, Iran Banking Institute, Central Bank of Iran

ABSTRACT

In this paper, a simple method is presented to visualize the optimal time for closing a momentum trade. The decision criterion is based on discounted financial asset price (like stock) at which discounted price is computed with a minimum attractive rate of return. It is seen that as soon as, the discounted price starts decreasing is the best time for closing a momentum trade.

Keywords: Geometric Brownian motion; Momentum trade; Stopping time

INTRODUCTION

Ekstrom and Lindberg (2011) proposed a strategy, based on Bayesian posterior probability, for optimal closing time of a momentum trade. They supposed that the financial asset price (say a stock) obeys a geometric Brownian motion with a change point in drift. Indeed, they assumed that

\[ds = \mu_s dt + \sigma dB_s, \]

where \(B_s \) is a Brownian motion and \(\mu_t = \theta_1 \) for \(t \leq \tau \) and \(\mu_t = \theta_2 \) for \(t > \tau \). The optimal strategy solution is obtained by

\[V = \max_{\tau \in \mathcal{F}} E(e^{-\tau \nu} s_{t^*}), \]

where \(\mathcal{F} \) is the collection of all stopping times \(\tau^* \). However, one can see that

\[E(e^{-\tau \nu} s_t) = \begin{cases} (\theta_1 - \nu) \tau & t \leq \tau \\ (\theta_1 - \theta_2) \tau - (r - \theta_2) t & t > \tau. \end{cases} \]

This function attains its maximum at \(\tau^* \) if \(\theta_2 < r < \theta_1 \). If \(\tau \approx \infty \) with probability one, then \(E(e^{-\tau \nu} s_{t^*}) = E(e^{-\tau \nu} s_t) \), using the optional sampling theorem. Indeed, for all \(\tau^* < \infty \), then \(E(e^{-\tau \nu} s_{t^*}) \) attains its maximum at \(\tau \). Here, conditions are extracted to make sure that

\[M_t = \frac{e^{-\tau \nu} s_t}{E(e^{-\tau \nu} s_t)}, \]

is close to 1 and then \(e^{-\tau \nu} s_t \) is used instead of \(E(e^{-\tau \nu} s_t) \). It is easy to see that

\[M_t = \exp \left(\sigma B - \frac{\sigma t}{2} \right) = \exp \left(\sigma (B - \frac{t}{2}) \right), \]

and that \(M_t \) is a martingale with respect to filtration \(\sigma(B_u, u \leq t) \), i.e., the sigma-field generated by \((B_u, u \leq t)\). It is clear that when \(\sigma \to 0 \), then \(M_t \to 1 \). Also, Doob inequality (see Bjork, 2009) implies that, for some maturity \(L \), then

\[P(\sup_{0 \leq \tau \leq L} M_t > \epsilon) \leq \frac{E(M^\alpha)}{\epsilon^\alpha} \]

for some \(0 < \alpha < 1 \). Also, \(E(M^\alpha) = \frac{-\alpha(1-\alpha)}{2} L \). Thus,

\[E(M^\alpha) = \exp \left(\alpha \left(\frac{1}{2} \right) \right) \leq \exp \left(\frac{-\alpha}{2} - L + \log(\epsilon) \right). \]

Assuming \(\frac{\sigma^2}{L} = -\log(\epsilon) \), then \(L = \frac{-2\log(\epsilon)}{\sigma^2} \).

Thus, by sequentially search for existence of momentum during intervals with length \(L \), recursively, as soon as \(e^{-\tau \nu} s_t \) starts to decrease, that time point is a suitable point for selling the asset. The following proposition summarizes the above discussion.

Proposition 1

Assuming \(L = \frac{-2\log(\epsilon)}{\sigma^2} \), by search recursively time intervals with length \(L \), the momentum is detected.

Proof. It is discussed in section 1.

Thus, the estimate for \(\tau \) is the time point at which \(e^{-\tau \nu} s_t \) attains its maximum. That is,

\[\hat{\tau} = \arg\max_{\tau} \{e^{-\tau \nu} s_t \}. \]

Since, \(e^{-\tau \nu} s_t \) is too close to its mean and \(E(e^{-\tau \nu} s_t) \) takes its maximum at actual change
point τ, thus, $\hat{\tau}$ is a consistent estimator for τ. The following proposition summarizes this fact.

Proposition 2

The estimator $\hat{\tau}$ is a consistent estimator for τ.

The rest of the paper is organized as follows. First, the simulation results are derived in the next section. Section 3 concludes.

SIMULATIONS

Here, using the Model Risk adds-in of Excel, this case is simulated that $\theta_1 = 0.002, \theta_2 = 0.007, \tau = 543$, initial value of stock is 0.38 $, \sigma = 0.025$ and $\varepsilon = 0.01$. Let $\tau = 0.005$. The time period of study is 1000 days. The following plot shows the time series of $e^{-\tau t} s_t$ which implies that there is a change about 543.

![Figure 1. Time series plot of $e^{-\tau t} s_t$](image1)

While the time series of s_t is given as follows. However, the Fig.1. has better visual interpretation.

![Figure 2. Time series plot of s_t](image2)

As follows, the empirical distribution of $\hat{\tau}$ is given. Clearly, $\hat{\tau}$ is concentrated well on actual momentum time τ.

![Figure 3. Histogram of $\hat{\tau}$](image3)

Here, a threshold K is given such that $P(\max_t e^{-\tau t} s_t \leq K) = 1 - \alpha$. The following table gives some values for K, for various selections for α.

<table>
<thead>
<tr>
<th>α</th>
<th>0.1</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>2.71</td>
<td>3.42</td>
<td>3.79</td>
<td>4.81</td>
</tr>
</tbody>
</table>

CONCLUSION

The argmax time point of $e^{-\tau t} s_t$ is a consistent estimator of actual momentum point. The time series plot of $e^{-\tau t} s_t$ has a good visualization for momentum time point.

REFERENCES
