An Annotation on Normalized Diagrams for the Existence of Two Species of a Diprotic Acid in Solution

Julia Martín* Irene Abengózar Suárez2, Agustín G. Asuero2

1Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, Seville, Spain.
2Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain.
*Corresponding author: Julia Martín, 1Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, Seville, Spain.

ABSTRACT

The aim of this annotation is to find out in which experimental conditions a diprotic acid may be treated as a monoprotic one, the drawing of normalized diagrams helping on this context, facilitating the choice of pH ranges in which there are only two species in solution from a practical point of view.

Keywords: Diprotic acid, Monoprotic acid, normalized diagrams, number of species

INTRODUCTION

The acidity constants corresponding to the equilibria of diprotic acids may be described by

$$ H_{n-1}R \rightleftharpoons H_nR + H \quad (N \geq n \geq 1) $$

$$ K_{an} = (H) \left[\frac{H_nR}{H_{n-1}R} \right] \quad (N = 2, \ n = 1, \ or \ 2) $$

At low enough pH values we get the equilibrium $H_2R=HR+H$ governed by K_{a1}, whereas at high enough pH values is the equilibrium $HR=R+H$, governed by K_{a2}, which prevails. The absorbance for a diprotic acid is related to concentration by

$$ A = \frac{A_0 + A_1(H) + A_2(H^3)}{1 + \frac{(H)}{K_{a2}K_{a1}}} $$

where A_0, A_1, and A_2 are the limit absorbance of R, HR and H_2R species, respectively. Then, when only two species H_2R and HR, or HR and R are present, Eqn. (3) takes the form

$$ A = \frac{A_{n-1} + A_{n-1}(H)}{K_{an}} $$

Being susceptible of linear transformation [2]. In order to ascertain in which conditions Eqn. (3) is applicable we may make of normalized diagrams as follows.

NORMALIZED MOLARITY FRACTION OF THE H_2R AND R SPECIES: NORMALIZED DIAGRAMS

The molarity fraction of the H_2R species of a dibasic acid can be expressed as

$$ f_2 = \frac{[H_2R]}{[H_2R] + [HR] + [R]} = \frac{1}{1 + \frac{K_{a1}}{H_{a1}^2} + \frac{K_{a2}}{H_{a2}^2} + \frac{K_{a1}K_{a2}}{H_{a1}H_{a2}}} $$

(5)

Where

$$ \Delta pK_a = pK_{a2} - pK_{a1} = \log \frac{K_{a1}}{K_{a2}} $$

and

$$ z = pK_{a2} - pH = \log \frac{H}{K_{a2}} $$

(6)

The molarity fraction of R species can be indeed expressed as
F_{a} = \frac{[R]}{C_{a}} = \frac{[R]}{[R]+[HR]+[H_{2}R]} = \frac{1}{1 + \frac{[HR]}{[R]} + \frac{[H_{2}R]}{[R]}} = \frac{1}{1 + \frac{K_{a1}}{K_{e}} \left(\frac{[H]}{[R]} \right) + \frac{K_{a2}}{K_{e}} \left(\frac{[H]}{[R]} \right)^{2}} = \frac{1}{1 + 10^{\Delta pK_{a}} \left(10^{-z} + 10^{-2z} \right)}

being in this case

\[y = pK_{a1} - \log \frac{K_{a1}}{(H)} \tag{9} \]

Taking reciprocals in Eqn. (5), subtracting 1, we get

\[\frac{1}{f_{2}} - 1 = 10^{\Delta pK_{a}} \left(10^{-z} + 10^{-2z} \right) \tag{10} \]

which may be ordered as a second degree equation

\[10^{-2z} + 10^{z} - \frac{1}{f_{2}} - 1 = 0 \tag{11} \]

Solving Eqn. (11) for fixed values of \(f_{2} \) and different values of \(\Delta pK_{a} \), we have

\[z = pK_{a1} - pH = -\log \left(-1 + \frac{1 + 4 \left(\frac{1}{f_{2}} - 1 \right) 10^{\Delta pK_{a}}}{2} \right) \tag{12} \]

Values of \(pK_{a1} - pH = z \) (or \(pH - pK_{a1} = y \)) for different values of \(\Delta pK_{a} \) are depicted in Figures 1 and 2, respectively. Figure 3 shows \(pK_{a1} - pH = z \) (or \(pH - pK_{a1} = y \)) values against \(\Delta pK_{a} \) for varying \(f_{2} \) (or \(f_{0} \)) values.

The family of curves \(f_{2} = F(z, \Delta pK_{a}) \) permits the construction of the distribution diagrams of the different species of a diprotic acid. In fact: i) once \(\Delta pK_{a} \) is known, one can read directly from the diagram the value of \(f_{2} \) for each value of \(x \); ii) as \(z+y=\Delta pK_{a} \).

Figure 1. Molar fractions of \(f_{2} \) (or \(f_{0} \)) as a function of \(z=pK_{a1}-pH \) (or \(y=pH-pK_{a1} \)) at varying values of \(\Delta pK_{a} \).

Figure 2. \(\log f_{2} \) (or \(\log f_{0} \)) values as a function of \(z=pK_{a1}-pH \) (or \(y=pH-pK_{a1} \)) at varying \(\Delta pK_{a} \) values.

Figure 3. Values of \(z=pK_{a1}-pH \) (or \(y=pH-pK_{a1} \)) as a function of \(\Delta pK_{a} \) at varying molar fractions \(f_{2} \) (or \(f_{0} \)) values

Table 1 shows the values of \(z \) (or \(y \)) against \(\Delta pK_{a} \) for given low values of \(f_{2} \) (or \(f_{0} \)). In cases in which the contribution of the \(H_{2}R \) (or \(R \)) species is valueless, Eqns. (4) is valid, being possible in consequence to apply slope-intercept procedures to the evaluation of acidity constants from spectrophotometric measurements. The range of \(pH \) usable in the evaluation of \(pK_{a1} \) and \(pK_{a2} \) depends both on the value of \(\Delta pK_{a} \) and the restriction imposed to the value of \(f_{2} \) (and \(f_{0} \)).

Therefore, in order to evaluate the \(pK_{a1} \) by the singular straight line (logarithmic) method \([R]\) should be close to cero \((f_0 \leq 0.01)\). The interval of \(pH \) usable depends on the value of \(\Delta pK_{a} \). For well-separated acidity constants this \(pH \) range is \(pK_{a1} + 1 \) \((n=1, 2)\) because the quotient \([H_{N_{a-1}}]/[H_{N_{a+1}}] \) \((N=2)\) would be varied between 10
An Annotation on Normalized Diagrams for the Existence of Two Species of a Diprotic Acid in Solution

and 0.1. In the limit case [3] $K_{a1}/K_{a2}=4$, and then $\Delta pK_a=0.6$ and the range of pH usable (f_2 or $f_0\approx 0.01$, respectively) is ($pK_{a1}-1.0$, $pK_{a1}-0.65$) for the evaluation of the first acidity constant, and ($pK_{a2}+0.65$, $pK_{a2}+1$) for the second.

Table 1. Values of z (or y) for different values of ΔpK_a and f_2 (or f_0)

<table>
<thead>
<tr>
<th>ΔpK_a</th>
<th>0.01000</th>
<th>0.005</th>
<th>0.0040</th>
<th>0.0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>-0.6543</td>
<td>-0.7964</td>
<td>-0.9707</td>
<td>-0.9788</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.5431</td>
<td>-0.6881</td>
<td>-0.7636</td>
<td>-0.8732</td>
</tr>
<tr>
<td>1.0</td>
<td>-0.4291</td>
<td>-0.5777</td>
<td>-0.6547</td>
<td>-0.7661</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.3115</td>
<td>-0.4646</td>
<td>-0.5435</td>
<td>-0.6573</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.1896</td>
<td>-0.3481</td>
<td>-0.4294</td>
<td>-0.5461</td>
</tr>
<tr>
<td>1.6</td>
<td>-0.0623</td>
<td>-0.2276</td>
<td>-0.3118</td>
<td>-0.4322</td>
</tr>
<tr>
<td>1.8</td>
<td>-0.0712</td>
<td>-0.1021</td>
<td>-0.1898</td>
<td>-0.3147</td>
</tr>
<tr>
<td>2.0</td>
<td>-0.2121</td>
<td>0.0294</td>
<td>-0.0627</td>
<td>-0.1929</td>
</tr>
<tr>
<td>2.2</td>
<td>-0.3613</td>
<td>0.1679</td>
<td>0.0708</td>
<td>-0.0658</td>
</tr>
<tr>
<td>2.4</td>
<td>-0.5192</td>
<td>0.3144</td>
<td>0.2117</td>
<td>0.0676</td>
</tr>
<tr>
<td>2.6</td>
<td>-0.6858</td>
<td>0.4696</td>
<td>0.3609</td>
<td>0.2083</td>
</tr>
<tr>
<td>2.8</td>
<td>0.8605</td>
<td>0.6335</td>
<td>0.5187</td>
<td>0.3572</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0421</td>
<td>0.8059</td>
<td>0.6853</td>
<td>0.5148</td>
</tr>
</tbody>
</table>

FINAL COMMENTS

The family of curves $f_2=F(z, \Delta pK_a)$ where f_2 is the mole fraction of H_2R species, $\Delta pK_a=pK_{a2}-pK_{a1}$, and $z=pK_{a2}-pH$ allows the construction of the normalized distribution diagrams of the H_2R species. In the same way, the family of curves $f_0=F(y, \Delta pK_a)$ where f_0 is the mole fraction of R species, and $y=pH-pK_{a1}$ allows the construction of the normalized distribution diagrams of the R species. This allows us to check when the contribution of H_2R or R species can be neglected.

REFERENCES

